Malliavin Calculus Method for Asymptotic Expansion of Dual Control Problems

نویسنده

  • Michael Monoyios
چکیده

We develop a technique based on Malliavin-Bismut calculus ideas, for asymptotic expansion of dual control problems arising in connection with exponential indifference valuation of claims, and with minimisation of relative entropy, in incomplete markets. The problems involve optimisation of a functional of Brownian paths on Wiener space, with the paths perturbed by a drift involving the control. In addition there is a penalty term in which the control features quadratically. The drift perturbation is interpreted as a measure change using the Girsanov theorem, leading to a form of the integration by parts formula in which a directional derivative on Wiener space is computed. This allows for asymptotic analysis of the control problem. Applications to incomplete Itô process markets are given, in which indifference prices are approximated in the low risk aversion limit. We also give an application to identifying the minimal entropy martingale measure as a perturbation to the minimal martingale measure in stochastic volatility models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of the Asymptotic Expansion Approach based on Malliavin-Watanabe Calculus in Financial Problems

This paper reviews the asymptotic expansion approach based on MalliavinWatanabe Calculus in Mathematical Finance. We give the basic formulation of the asymptotic expansion approach and discuss its power and usefulness to solve important problems arisen in finance. As illustrations we use three major problems in finance and give some useful formulae and new results including numerical analyses.

متن کامل

Malliavin calculus and asymptotic expansion for martingales

We present an asymptotic expansion of the distribution of a random variable which admits a stochastic expansion around a continuous martingale. The emphasis is put on the use of the Malliavin calculus; the uniform nondegeneracy of the Malliavin covariance under certain truncation plays an essential role as the Crame r condition did in the case of independent observations. Applications to stati...

متن کامل

An Asymptotic Expansion with Push-Down of Malliavin Weights

This paper derives asymptotic expansion formulas for option prices and implied volatilities as well as the density of the underlying asset price in multi-dimensional stochastic volatility models. In particular, the integration-byparts formula in Malliavin calculus and the push-down of Malliavin weights are effectively applied. We provide an expansion formula for generalized Wiener functionals a...

متن کامل

The Asymptotic Expansion Formula of Implied Volatility for Dynamic SABR Model and FX Hybrid Model

The author considers SABR (stochastic-αβρ) model which is a two factor stochastic volatility model and give an asymptotic expansion formula of implied volatilities for this model. His approach is based on infinite dimensional analysis on the Malliavin calculus and large deviation. Furthermore, he applies the approach to a foreign exchange model where interest rates and the FX volatilities are s...

متن کامل

On Pricing Barrier Options with Discrete Monitoring

This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in an asymptotic expansion approach. First, the paper derives an asymptotic expansion for generalized Wiener functionals. After it is appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Financial Math.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013